Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
J Nanosci Nanotechnol ; 21(4): 2075-2089, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1050421

RESUMEN

In the current pandemic situation raised due to COVID-19, drug reuse is emerging as the first line of treatment. The viral agent that causes this highly contagious disease and the acute respiratory syndrome coronavirus (SARS-CoV) share high nucleotide similarity. Therefore, it is structurally expected that many existing viral targets are similar to the first SARS-CoV, probably being inhibited by the same compounds. Here, we selected two viral proteins based on their vital role in the viral life cycle: Structure of the main protease SARS-CoV-2 and the structural base of the SARS-CoV-2 protease 3CL, both supporting the entry of the virus into the human host. The approved drugs used were azithromycin, ritonavir, lopinavir, oseltamivir, ivermectin and heparin, which are emerging as promising agents in the fight against COVID-19. Our hypothesis behind molecular coupling studies is to determine the binding affinities of these drugs and to identify the main amino acid residues that play a fundamental role in their mechanism of action. Additional studies on a wide range of FDA-approved drugs, including a few more protein targets, molecular dynamics studies, in vitro and biological in vivo evaluation are needed to identify combination therapy targeted at various stages of the viral life cycle. In our experiment in silico, based mainly on the molecular coupling approach, we investigated six different types of pharmacologically active drugs, aiming at their potential application alone or in combination with the reuse of drugs. The ligands showed stable conformations when analyzing the affinity energy in both proteases: ivermectin forming a stable complex with the two proteases with values -8.727 kcal/mol for Main Protease and -9.784 kcal/mol for protease 3CL, Heparin with values of -7.647 kcal/mol for the Main protease and -7.737 kcal/mol for the 3CL protease. Both conform to the catalytic site of the proteases. Our studies can provide an insight into the possible interactions between ligands and receptors, through better conformation. The ligands ivermectin, heparin and ritonavir showed stable conformations. Our in-silica docking data shows that the drugs we have identified can bind to the binding compartment of both proteases, this strongly supports our hypothesis that the development of a single antiviral agent targeting Main protease, or 3CL protease, or an agent used in combination with other potential therapies, it could provide an effective line of defense against diseases associated with coronaviruses.


Asunto(s)
Azitromicina/química , COVID-19/enzimología , Proteasas 3C de Coronavirus/química , Heparina/química , Ivermectina/química , Lopinavir/química , Oseltamivir/química , Ritonavir/química , SARS-CoV-2/enzimología , Humanos , Simulación del Acoplamiento Molecular
2.
J Nanosci Nanotechnol ; 20(12): 7311-7323, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: covidwho-680345

RESUMEN

We started a study on the molecular docking of six potential pharmacologically active inhibitors compounds that can be used clinically against the COVID-19 virus, in this case, remdesivir, ribavirin, favipiravir, galidesivir, hydroxychloroquine and chloroquine interacting with the main COVID-19 protease in complex with a COVID-19 N3 protease inhibitor. The highest values of affinity energy found in order from highest to lowest were chloroquine (CHL), hydroxychloroquine (HYC), favipiravir (FAV), galidesivir (GAL), remdesivir (REM) and ribavirin (RIB). The possible formation of hydrogen bonds, associations through London forces and permanent electric dipole were analyzed. The values of affinity energy obtained for the hydroxychloroquine ligands was -9.9 kcal/mol and for the chloroquine of -10.8 kcal/mol which indicate that the coupling contributes to an effective improvement of the affinity energies with the protease. Indicating that, the position chosen to make the substitutions may be a pharmacophoric group, and cause changes in the protease.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Betacoronavirus/enzimología , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Cisteína Endopeptidasas/química , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Adenina/administración & dosificación , Adenina/análogos & derivados , Adenina/química , Adenina/farmacología , Adenosina/análogos & derivados , Adenosina Monofosfato/administración & dosificación , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/química , Adenosina Monofosfato/farmacología , Alanina/administración & dosificación , Alanina/análogos & derivados , Alanina/química , Alanina/farmacología , Amidas/administración & dosificación , Amidas/química , Amidas/farmacología , Antivirales/administración & dosificación , Sitios de Unión , COVID-19 , Cloroquina/administración & dosificación , Cloroquina/química , Cloroquina/farmacología , Proteasas 3C de Coronavirus , Interacciones Farmacológicas , Humanos , Enlace de Hidrógeno , Hidroxicloroquina/administración & dosificación , Hidroxicloroquina/química , Hidroxicloroquina/farmacología , Ligandos , Simulación del Acoplamiento Molecular , Nanotecnología , Pandemias , Inhibidores de Proteasas/administración & dosificación , Pirazinas/administración & dosificación , Pirazinas/química , Pirazinas/farmacología , Pirrolidinas/administración & dosificación , Pirrolidinas/química , Pirrolidinas/farmacología , Ribavirina/administración & dosificación , Ribavirina/química , Ribavirina/farmacología , SARS-CoV-2 , Electricidad Estática , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA